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Abstract. Clusters which just span finite latticesof various sizes have been generated using a 
Monte Carlo method. These have been analysed to form estimates of the mean values of 
cyclomatic index, valence and perimeter. In addition the shortest spanning self-avoiding 
walk has been characterised. The ramified nature of these clusters is discussed in terms of 
these properties. 

1. Introduction 

Monte Carlo methods were first used in percolation theory by Hammersley and 
co-workers (Vyssotsky et a1 1961, Frisch et a1 1962) and, since then, various attempts 
have been made to estimate the critical density ( p , )  and some critical exponents (e.g. 
Dean 1963, Dean and Bird 1967, Kirkpatrick 1976, Hoshen et a1 1979) for various 
lattices. More recently these methods have proved useful in investigating various 
properties of clusters, both above and below pc ,  such as the perimeter (Domb eta1 1975, 
Stoll and Domb 1978) and the cyclomatic index (Stoll and Domb 1979). These results 
are of particular interest because properties such as the perimeter and cyclomatic index 
were invoked by Domb (1974) to characterise the degree of ramification of a cluster. 
Other workers (Stauffer 1978, Shlifer et a1 1979) have focused attention on the radius 
of gyration of a cluster and on the ‘backbone’ of the percolating cluster (i.e. the part of 
the cluster contributing directly to the percolation process). 

In this paper we consider percolation on a set of finite square lattices and examine 
properties of the clusters at various occupation densities, paying particular attention to 
the cluster which just spans the finite lattice (the ‘percolating clusters’). We estimate 
various properties of the clusters and examine our results in the light of several 
suggestions made in the papers mentioned above. We are especially concerned with the 
extent to which the percolating cluster at the percolation threshold can be considered 
ramified and to what extent it resembles a walk-like graph. 

2. Monte Carlo approach 

Most Monte Carlo work has employed periodic boundary conditions in an attempt to 
avoid the inherent limitation of working with a finite system. We have chosen, instead, 
to use free boundaries but to carry out the calculations on systems with a variety of sizes 
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and to attempt to extrapolate the results, especially for percolating clusters, to infinite 
systems. Otherwise the Monte Carlo technique used is that described by Dean (1963) 
and involves successively filling empty lattice sites until some maximum density of 
occupied sites is achieved. Each realisation of the process gives data for all densities ( p )  
less than this designated maximum (in this case, for p G 0.75). When each new site is 
filled the system is examined to determine if a cluster spans the lattice (i.e. contains a 
connected path from the North to South or from the East to West sides of the lattice). 
The cluster which first does this is referred to as the ‘percolating cluster’ and the value of 
p at which this occurs is an estimator of pc  for this particular finite system. We form 
averages of various properties of these percolating clusters at p c ,  These calculations 
have been carried out for various m x in lattices where m = 10, 20, 40, 100 and 200. 
The number of realisations used was typically 600. 

3. Properties of the percolating cluster at the percolation threshold 

Estimates of various properties of the percolating cluster are given in table 1 for each 
finite lattice studied. Primarily as a test of the technique used here we have calculated 
the average value of p at which percolation first occurs on an m X m lattice, p,(m). This 
quantity increases with increasing m ai?d we have attempted to extrapolate against m-’. 

Tnble 1. Properties of the percolating cluster. 

Size of lattice 10x10  20x20  4 0 x 4 0  100x100 200x200 

Direct estimate of p c  

Fraction of 
1 

sites with valence 3 1: 
Average valence 
( c ) / ( n )  
@ I n )  
Average length, s, of 

shortest spanning self- 
avoiding walk 

‘Thickness’, t, of shortest 
spanning walk 

‘Relative thickness’, t*, of 
shortest spanning walk 

0.5544 
0.18 
0.44 
0.31 
0.07 
2.28 
0.181 
0,792 

11.95 

2.8 

0.234 

0.5667 
0.15 
0.40 
0.35 
0.10 
2.41 
0.221 
0.756 

28.3 

4.2 

0.149 

0.5783 
0.14 
0.38 
0.36 
0.12 
2.47 
0,243 
0.730 

63.0 

6.7 

0,107 

0.5854 
0.13 
0.37 
0.37 
0.13 
2.50 
0.252 
0.709 

183.0 

13.2 

0.072 

0.5888 
0.13 
0.36 
0.37 
0.14 
2.51 
0.257 
0,697 

The results are shown in figure 1. The extrapolation is reasonably smooth and suggests 
that the value for an infinite lattice is p c  = 0394*0+003.  Dean and Bird (1967) found 
0.593 using a similar Monte Carlo method, while Neal (1972) estimated 0.593. The 
most recent series analysis result (Sykes et al 1974, Gaunt er a1 1976) is 0.593 f 0.002. 

The average valence of a site in the percolating cluster increases with m and appears 
to be tending to a limit in the region of 2.52 for an infinite lattice. A large fraction of 
sites have valence greater than two (at least 50%) so that, at this detailed level, the 
cluster does not resemble a self-avoiding walk. The cyclomatic index, c, of a cluster can 
be obtained from the average valence, V ,  of a site in the cluster, and the number of sites, 
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Figure 1. Lattice size dependence of estimates of the critical density. 

n, in the cluster using Euler's relation, giving 

and hence, for an infinite lattice, 

Averaging over all realisations gives 

(lim n-m {c /n})  =;((;)-2)=4(2.52-2)=0.26. (3) 

In table 1 we also give the ratio of averages over all percolating clusters ( c ) / ( n )  for finite 
lattices which differs from this in using ratios of averages instead of averages of ratios. 
The m dependence of this quantity is shown in figure 2. Again the extrapolation is 
smooth and the limiting value is also in the region of 0.26. This is in close agreement 
with the value obtained by Stoll and Domb (1979) and Cherry and Domb (1980). Since 
the maximum cyclomatic index per site in the cluster is unity for an infinite cluster, this 
means that about 26% of the maximum possible number of cycles are actually present. 
While this number is much less than the value of 100°/~ for a completely compact 
cluster? it is also much greater than the value zero expected for a tree or, in particular, 
for a self-avoiding walk. Again, at least on this scale, the percolating cluster does not 
resemble a walk. 

We have also calculated the expectation of the ratio of the number of perimeter sites 
of the percolating cluster to the number of sites in the cluster, which we write as ( b l n ) .  
This quantity decreases with m, tending to a limiting value of about 0-69. Hankey 
(1978) and Reich and Leith (1978) have shown that this ratio should equal (1 - p c ) / p c  

t See also Temperley's (1976) results on the cyclomatic index of the average bond cluster at the percolation 
threshold. 
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Figure 2. Lattice size dependence of estimates of the cyclomatic index of the percolating 
cluster. 

and, using the series estimate of p c  = 0,593, we obtain ( b / n )  = 0.686. Even for a finite 
lattice, the relationship seems to hold, at least approximately, as we see by inserting the 
finite lattice estimates pc(m) into this expression. 

These properties are all non-metric. An alternative way to characterise a cluster is 
by a metric property and as an example we consider the span in the non-percolating 
direction. For a finite m x m lattice we call the average span in the percolating direction 
(N + S or W + E) the ‘length’ l ( m )  = m - 1, since a percolating cluster must just span the 
lattice. The ‘width’ w(m)  is the average span in the non-percolating direction and we 
can enquire how w ( m )  depends on m. The area of the smallest rectangle which can 
contain the percolating cluster is w(m)l (m)  and we expect this to be a non-zero fraction 
of the total number of lattice sites, m2. Since l (m)  = m - 1, this implies that w(m)  = 
O(m), and the numerical data suggest that w ( m )  - 0.79m. To obtain a visual impression 
of the density of sites in a percolating cluster consider a cluster which percolates in the y 
direction (N+ S) and which has vertices at the lattice positions {(xi, y l ) ,  i = 1, 2, . . . , n} .  
We define the x-centre of the cluster as 

(4) 

and examine the number of sites in the cluster with x coordinate equal to xc, x c i  1, 
x,*2,, . . , and then average these numbers over all percolating clusters. This is the 
average density of occupied sites around the x-centre, p(x). The dependence of p(x) on 
x for m = 200 is shown in figure 3. The clusters appear to be quite diffuse in the x 
direction, occasionally reaching one edge of the lattice. (The symmetry comes from 
averaging over all percolating clusters.) 

A more interesting way to define the length of the cluster is as the length of the 
shortest (and therefore self-avoiding) walk which is a subgraph of the cluster and which 
spans the finite lattice. If the average length of this walk is s ( m )  for an m x m lattice we 

xc = 3(min xl + max xi) 
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Figure 3. Density of sites (in arbitrary units) in the non-percolating direction for percolating 
clusters on a 200 x 200 lattice. 

note that s ( m )  would equal m - 1 for a completely compact cluster, i.e. s ( m )  would then 
equal l (m).  Our numerical data (see table 1) suggests that s ( m ) / m  is monotone 
increasing while s (m) /m2  is monotone decreasing, i.e. s (m)  - m e  with 1 < 0 < 2. (For a 
compact cluster, 0 = 1.) We can define an alternative measure of the width (which we 
call the thickness, t (m))  as 

t ( m )  = n ( m ) / s ( m )  ( 5 )  

where n ( m )  is the number of sites in the percolating cluster. For p > p c ,  n ( m )  is a 
non-zero fraction of the total number of lattice sites so that t ( m ) s ( m )  - m2. Asp + p c +  
we expect this to remain true, so that 

t (m)  - m2-’. (6) 

Since 0 < 2 the ‘walk’ gets ‘thicker’ as m increases. However, we can define a relative 
thickness, or ‘thickness per unit length’, 

t*(m) = t ( m ) / s ( m )  

(7) 5 m-2(s-i) 

and since we believe that 6 > 1, t* (m)  + 0 as m + 00. 

4. Discussion 

Our calculations on the infinite cluster were addressed to the question: to what degree 
are percolating clusters (at p , )  ramified? Not surprisingly the answer depends on what 
one means by ramified. Our results certainly support the idea that the perimeter, b, is 
proportional to the number, n, of sites in the cluster. (For a compact cluster b = O(Jn).)  
The cyclomatic index corresponds to only about 26% of the maximum possible number 
of cycles being present. Related to this is the fact that the average valence of a site in the 
cluster is about 2.52. These values support the idea that percolating clusters are not 
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compact. However, they do not seem to resemble self-avoiding walks with relatively 
few branches or cycles. There is, of course, a shortest self-avoiding walk through the 
cluster from one side of the lattice to the other but this walk accounts for only a small 
proportion of the vertices in the cluster, namely ( s ( m )  + l ) / n  ( m )  - t(m)-' as m +CO.  

Indeed the thickness, t (m) ,  of this walk seems to diverge for an infinite lattice. However, 
the thickness diverges less rapidly than the length of this walk and it seems to be only in 
this sense that the percolating cluster can be considered walk-like. 
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